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Abstract—In-memory computing (IMC) is one of the most
promising candidates for data-intensive computing accelerators
of machine learning (ML). A key ML algorithm for dimensional-
ity reduction and classification is the principal component anal-
ysis (PCA), which heavily relies on matrix-vector multiplications
(MVM) for which classic von Neumann architectures are not
optimized. Here, we provide the experimental demonstration of
a new IMC-based PCA algorithm based on power iteration and
deflation executed in a 4-kbit array of resistive switching random-
access memory (RRAM). The classification accuracy of Wisconsin
Breast Cancer dataset reaches 95.43%, close to floating-point
implementation. Our simulations indicate a 250× improvement
in energy efficiency compared to commercial graphic processing
units (GPUs), thus supporting IMC for energy-efficient ML in
modern data-intensive computing.

Index Terms—In-memory computing, resistive random access
memory, hardware accelerator, principal component analysis

I. INTRODUCTION

Machine learning (ML) is becoming ubiquitous in our daily
life, stimulating the development of new computing hardware
to reduce energy consumption and maximize throughput [1].
Digital computing cannot meet these requirements, due to
energy and latency cost of von Neumann architecture [2].
In-memory computing (IMC) has risen as one of the most
promising candidates for next-generation computing given its
high throughput, low energy and good scaling thanks to high-
density crosspoint arrays of resistive memories [3]. Owing to
its inherent parallelism, IMC is well-suited to accelerate alge-
braic operations such as matrix-vector multiplication (MVM),
which is the cornerstone of many ML tasks. A key algorithm
in ML is the principal component analysis (PCA), capable
of reducing data dimensionality thus enabling clustering and
feature extraction [4]. PCA identifies the principal components
(PCs), namely the vector basis which maximizes data vari-
ance (Fig. 1a). Adopting the PCs as a new reference basis
can reveal data clusters and enable classification (Fig. 1b).
PCA algorithms include eigendecomposition (ED) [4], singu-
lar value decomposition (SVD) [5] and non-linear iterative
partial least squares (NIPALS) [6], [7]. However, the digital
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Ferrara, Ferrara, Italy.
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Fig. 1. Principal Component Analysis. From a multi-dimensional dataset
with observation of many variables (a), PCA extracts the directions of greater
variance, a projection upon which (b) allows to highlight clusters and untangle
correlations.
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Fig. 2. Eigendecomposition approach to PCA. The dataset is centered to
remove bias, then its covariance matrix is computed and decomposed to find
eigenvectors (principal components) and eigenvalues (variance contribution).
A subset of the PCs is used as reference frame for projection.

implementation of these algorithms is not efficient, due to the
need for massive MVM and extensive data movement. This
work presents a new IMC-based PCA algorithm, consisting of
a deflated power iteration to extract the PCs. The algorithm
is experimentally validated on a 4-kbit resistive switching
random access memory (RRAM) array revealing software-
equivalent accuracy in classifying the Wisconsin Breast Cancer
dataset. The simulated energy efficiency outperforms commer-
cial graphic processing units (GPUs) by a factor of 250.

II. IMC-BASED PCA ALGORITHM

The ED approach to PCA is illustrated in Fig. 2. First, the
dataset X̂ ∈ Rm×n is centered by subtracting the variable-
wise mean value, thus resulting in the zero-mean dataset X.
Then, the empirical covariance matrix XTX is computed and
decomposed into eigenvectors and eigenvalues, according to:

XTX = VΛV−1 (1)
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Fig. 3. Deflation algorithm for ED of a generic matrix A. Every time an eigenpair is computed, the associated subspace is removed from the iteration matrix
and a new power iteration is run. The stopping criterion is adapted to suit IMC-PCA.
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Fig. 4. Schematic representation of 2-step MVM scheme with crossbar arrays.
(a) Voltage vector v1 is applied to the memory array X, generating current
vector i1. (b) i1 is converted to voltage v2 in DSP, and reapplied to the array
rows. Current vector i2 is then probed on columns.

where V is the matrix of eigenvectors and Λ is the (diag-
onal) matrix of eigenvalues [8]. A subset of p eigenvectors
corresponding to the largest p eigenvalues is then chosen,
with the aim of enclosing as much variance as possible
while at the same time reducing the number of variables.
Typically, eigenvectors associated to eigenvalues larger than 1
are retained [9], while those associated to eigenvalues smaller
than 1 are discarded, such that the new reference basis is given
by P = V1:p. Finally, the dataset is recast in the new basis as
Y = XP.

The first eigenpair {λ1, e1} can be readily computed by
means of a power iteration on the empirical covariance matrix
XTX. The remaining eigenpairs are then obtained by a mod-
ified version of the numerical Hotelling deflation algorithm
(HDA) [10], where the subspace associated with a given
eigenvector is removed from the covariance matrix while pre-
serving the remaining eigenpairs. HDA is illustrated in Fig. 3.
Given a matrix A1 with eigenvalues {λ1, λ2, . . . , λn} and
eigenvectors {e1, e2, . . . , en}, the deflated matrix A2 = A1−
λ1e1e1

T has eigenvalues {0, λ2, . . . , λn} and eigenvectors
{e1, e2, . . . , en}. Performing a power iteration on A2 then
returns the eigenpair {λ2, e2}. By deflating again with respect
to e2, we obtain matrix A3 = A2 − λ2e2e2

T with eigenval-
ues {0, 0, λ3, . . . , λn} and eigenvectors {e1, e2, e3, . . . , en},
where the power iteration yields the eigenpair {λ3, e3}.
The deflation/iteration scheme is repeated until all eigenval-
ues/eigenvectors of interest, e.g. eigenvalues larger than 1 and
their eigenvectors, are obtained.

To accelerate the computation of principal components
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Fig. 5. In-memory deflation algorithm. (a) Voltage vector v1 is applied to
the [XT e1]T array, generating current vectors y and yos. (b) In DSP, y is
converted to voltage, whereas yos is inverted, each entry scaled by its λ and
converted to voltage. (c) Converted vectors are reapplied to the array rows.
Current vector i2 is probed on columns.

using IMC, we first map the zero-mean dataset matrix X
into a physical memory array. Then we use the two-step
approach of Fig. 4 to execute the power iteration on XTX.
In the first MVM step (Fig. 4a), we apply a vector v1 of
voltages to the columns of the memory array thus obtaining
a current vector i1 = Xv1 at the rows of the same array.
The current vector i1 is then converted back to a voltage
vector v2 and applied to the rows of the memory array
for the second MVM step (Fig. 4b), resulting in a current
vector i2 = XTv2 = XTXv1. Repeating the process allows
to complete the first power iteration to extract the leading
eigenpair {λ1, e1} of the empirical covariance matrix XTX.
Note that the 2-step MVM approach allows to execute the
power iteration without explicitly computing and mapping the
empirical covariance matrix XTX.
Deflation techniques can be directly applied to the 2-step

IMC-accelerated power iteration approach of Fig. 4, as they
can be implemented by simply adding extra rows to the
memory array containing the dataset X, as shown in Fig. 5.
After the first power iteration, eigenvector e1 is stored in an
additional row of the memory array. Applying a voltage vector
v1 to the columns of the memory array now yields the current
vector (Fig. 5a):

i1 =

[
y
yos

]
=

[
X
e1

T

]
v1 (2)

The sub-vector y is directly converted to voltage, whereas
sub-vector yos is multiplied by −λ1 and converted to voltage
(Fig. 5b). The converted sub-vectors are reapplied to the rows
of the memory array, thus yielding the current vector i2 on
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Fig. 6. (a) The Iris dataset records 150 observations of sepal and petal widths
and lengths, for three different species of the Iris genus. (b) Colorplot of the
600 dataset entries. Each column represents a single observation of the four
variables, namely sepal length and width, and petal length and width.
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Fig. 7. Cosine similarity of Iris dataset PCs computed using IMC-PCA
and simulated 3-bit conductances with variable programming error σG,
with respect to 64-bit floating-point PCs. (a) CoSim of the first principal
component, showing minimal variations. (b) CoSim of the second principal
component, higlighting a greater impact of conductance variability.

array columns (Fig. 5c), given by:

i2 = XTy + e1(−λ1yos) (3)

= XTXv1 − λ1e1e1
Tv1 (4)

= (XTX− λ1e1e1
T )v1 (5)

which is equivalent to the {λ1, e1}-deflated version of XTX.
Every time an eigenpair is computed, the eigenvector is

stored in an additional row of the memory array and a new
power iteration is executed to calculate the next eigenpair. This
deflation scheme is repeated until an eigenvalue λp+1 < 1 is
found. The total memory overhead to store the p eigenvectors
is only p × n cells. The algorithm only consists of O(1) in-
memory MVM iterations, except for O(m+p) conversion and
multiplication steps in the DSP.
To test our proposed algorithm, we ran simulations on the Iris

dataset [11], a collection of 150 observations for three species
of flowers of the Iris genus (Fig. 6a). For each species, 50
observations of petal and sepal length and width are recorded
(Fig. 6b). Fig. 7 shows the result of 100 IMC-PCA simulations
where we assumed ideal 3-bit precision of conductances with
a maximum value of 100 µS and a variable programming error
σG = 1, 2, 5 and 10 µS. As a figure of merit, we considered the
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Fig. 8. Experimental setup. (a) Schematic of a 1T1R RRAM device used in
this work. The RRAM has a stack consiting of a Ti-based oxygen reservoir and
an amorphous HfO2 switching layer sandwiched between TiN TE and BE. (b)
Multilevel I-V characteristics of 1T1R RRAM device measured for increasing
VG. (c) Packaged 4-kbit array of 1T1R RRAM devices manufactured by IHP
Microelectronics. (d) Active Technologies non-volatile memory tester Rifle
SE.

cosine similarity (CoSim) of the computed PCs with respect
to software simulation results obtained by MatLab’s PCA
routines with floating-point 64-bit precision. The results show
a significantly larger error for PC2 compared to PC1, where the
error increases with σG. The results also highlight that error
progressively accumulates as the number of computed PCs
increases, thus imposing a constraint on precise programming
to avoid excessive degradation.

III. IMC HARDWARE AND PROGRAMMING

The PCA algorithm was validated by IMC experiments on a
4 kbit array of TiN/Ti/HfO2/TiN RRAM manufactured by IHP
Microelectronics [12]. Fig. 8 shows the structure (a) and the
I-V characteristics (b) of the RRAM device. Experiments were
performed on packaged chips (Fig. 8c) by RIFLE SE, a non-
volatile memory tester manufactured by Active Technologies
[13] (Fig. 8d). RRAM devices have a one-transistor/one-
resistor (1T1R) structure in 0.25 µm CMOS technology.

Accurate multilevel programming of the RRAM was
achieved by the incremental gate voltage verify algorithm
(IGVVA), where the gate voltage was gradually incremented
from 0.5V to 1.7V with 10mV step during the set pro-
gramming pulse, consisting of a 1 µs pulse of amplitude
VTE = 1.2V applied at the top electrode [14]. The IGVVA
algorithm allows for accurate control of the RRAM filament
size, hence tight distribution of conductance G as shown in
Fig. 9a. To test the PCA algorithm, the RRAM devices were
programmed into eight conductance levels (L1-L8) linearly
spaced between G = 50 µS and 225 µS, and one level (L0)
at low conductance G = 25 µS. Fig. 9b shows the cumulative
distribution of G for the 9 levels: the standard deviation σG
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Fig. 9. IGVVA algorithm. (a) Measured conductance of a single RRAM device as a function of the number of applied programming pulses. (b) Cumulative
distributions of the 9 test levels, comprising 8 LRS states linearly spaced between 50 µS and 225 µS and 1 HRS level at 25 µS. (c) Conductance variability as
a function of the median conductance, for the nine target levels L0-L8. L1 is the less controllable level of this technology, whereas L8 achieves the minimum
variability.

B C

A

(b)(a)

G+ G–

+V

I = (G+ – G–)V = GV

I

–V

Fig. 10. Differential mapping scheme for dataset entries. (a) Differential cell,
with two conductances G+, G− driven by opposite voltages. (b) Systematic
mapping procedure for a generic matrix A by generation of matrices B,C :
A = B−C.

ranges from a minimum σG = 2.25 µS for L8 to a maximum
σG = 7.66 µS for L1. Level L0, which was obtained by
controlled reset, shows instead a moderately-low variability
of σG = 5.8 µS, as shown in Fig. 9c.

The dataset coefficients Xij were mapped with the differ-
ential scheme shown in Fig. 10, where Xij is mapped as the
conductance difference G+ −G−. In this differential scheme,
either G+ or G− (or both) were programmed in L8, to benefit
from the narrow distribution of high conductance levels and
minimize the impact of large σG at low conductance. The
differential mapping allows to encode equivalent conductance
values between −200 µS and 200 µS with 25 µS step, corre-
sponding to an equivalent resolution of 4.1 bits.

The readout noise of our setup was characterized based on
the programming characteristics of Fig. 9a and modeled as a
Gaussian current noise with σN = 0.8 µA.

IV. IMC EXPERIMENTS

To test the IMC experimental concept, we used two datasets
with different size and complexity. We first considered the
Iris dataset, whose data were mapped differentially onto 1200
devices, as shown by the accuracy plot of Fig. 11a. Statistical
fitting by means of the 3-component Gaussian mixture [15]

Fig. 11. Mapping accuracy of Iris dataset. (a) Correlation plot of target
and programmed conductances. (b) Histogram of conductance errors, fitted
with a 3-component Gaussian mixture with ensemble µG = −0.2 µS,
σG = 4.53 µS.

Fig. 12. IMC-PCA experiment on Iris dataset. (a) Power iteration transient
for first PC. (b) Power iteration transient for second PC. Both PCs show
a fast convergence due to the high ratio between the dominant and second
eigenvalue.

in Fig. 11b yields an overall mean error µG = −0.2 µS with
standard deviation σG = 4.53 µS. The IMC-PCA algorithm
was run on the RRAM array by executing the MVM operations
in hybrid mode, i.e., multiplication was done in situ according
to Ohm’s law Iij = GijVij , while the summation was
executed ex situ by summing cell currents externally in a
digital processor. Fig. 12a shows the power iteration to extract
the first PC, converging within about 10 cycles of 2-step MVM
and achieving a final cosine similarity (CoSim) of 0.99997.
The first eigenvector was then mapped in an extra row and the
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Fig. 13. Biplot representation of the Iris dataset in the space of the first two
PCs (filled: FP-64 PCA, open: IMC-PCA). The Iris setosa cluster is revealed
to be linearly separable from the I. versicolor and I. virginica clusters.

second PC was computed in 10 MVM iterations with CoSim
= 0.995 (Fig. 12b). Fig. 13 shows the resulting biplot, namely
the dataset projected along the extracted PCs: the cluster of
Iris setosa is linearly separated from Iris virginica and Iris
versicolor thus confirming the dimensionality reduction and
classification. Results tightly agree with those obtained from
software floating-point 64bit precision (FP64).

To provide further experimental support to our IMC-based
concept of PCA, we considered the Glass dataset [16], a
collection of 214 observations of glass materials from various
sources. The 1926 entries of the dataset were programmed in
3852 RRAM devices in differential mode. Fig. 14a shows the
correlation plot of programmed conductance as a function of
target conductance. The error distribution in Fig. 14b was fitted
by means of a 4-component Gaussian mixture, yielding a mean
programming error µG = 0.68 µS with standard deviation
σG = 15.1 µS. IMC-PCA was carried out, with the first PC
extracted in 10 iterations with CoSim = 0.97 (Fig. 15a)
and the second PC extracted in 10 iterations with CoSim =
0.91 (Fig. 15b). Fig. 16 shows the resulting biplot, evidencing
the good agreement with FP64 results, which supports the
accuracy of the IMC-based PCA approach.

V. BENCHMARK AND SCALING

To assess the scaling potential of our in-memory PCA
algorithm, we carried out large-scale simulations on the Wis-
consin Breast Cancer dataset [18], which records 30 dif-
ferent variables of diagnostic interest for 569 breast cancer
patients, totaling 17070 entries. Using the differential scheme
of Fig. 10, 34260 devices would be required to perform
IMC-PCA. The programming procedure was simulated in
software, where stochastic variations were assumed according
to the experimental distributions of Fig. 9b. Figs. 17a-b show

Fig. 14. Mapping accuracy of Glass dataset. (a) Correlation plot of target and
programmed conductances. (b) Histogram of conductance errors, fitted with a
4-component Gaussian mixture with ensemble µG = 0.68 µS, σG = 15.1 µS.

Fig. 15. IMC-PCA experiment on Glass dataset. (a) Power iteration transient
for first PC. (b) Power iteration transient for second PC. While convergence
appears to be slower than the Iris PCs, a limited number of iterations is
required to achieve high CoSim of 0.97 and 0.91.
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Fig. 16. Biplot representation of the Glass dataset in the space of the first two
PCs (filled: FP-64 PCA, open: IMC-PCA). Differently from the Iris dataset,
PCA does not allow to higlight any separable cluster among those recorded.

the mapping accuracy with µG = 0.29 µS, σG = 8.40 µS
upon fitting with a 3-component Gaussian mixture. Fig. 17c
shows the resulting biplot of the dataset projected along the
first two PCs: the obtained clusters allow to classify benign
and malignant tumors with 95.43% accuracy after logistic
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errors, fitted with a 3-component Gaussian mixture with ensemble µG = 0.29 µS, σG = 8.40 µS. (c) Biplot representation of the Breast Cancer dataset in
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IMC-PCA, close to FP64-PCA 95.61% accuracy.
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Fig. 19. Benchmark of proposed IMC architecture and algorithm on (a) throughput, (b) area, (c) energy and (d) energy efficiency, evaluated on the Wisconsin
Breast Cancer dataset and compared with a commercial GPU [17].

regression [19].

To comprehensively account for all energy, area and latency
contributions, we considered the architecture in Fig. 18a,
where the RRAM array is complemented by switch matrices
allowing to reroute alternatively rows and columns to digital-
analog converter (DAC) or current-to-digital converter, real-
ized by means of a transimpedance amplifier cascaded with
an analog-to-digital converter (TIA/ADC), depending on the
MVM step. The performance of all peripherals was extracted
from NeuroSim [20] and available literature [21] considering
the 14 nm lithographic node. Figs. 18b-c report area and

energy breakdown for the whole system, including both dataset
programming and PC computation contributions, highlighting
that the majority of energy is consumed in programming due
to both the large number of dataset entries and high target
conductances. However, the programming procedure may be
optimized independently of the PC computation algorithm,
motivating the analysis of area and energy breakdown for
the PC computation only (Figs. 18d-e), where now DSP
represents the major source of energy dissipation and area
occupation. When compared with a commercial GPU [17],
PC computation using IMC-based PCA achieves compara-
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Fig. 20. Energy performance as a function of dataset size for the pro-
posed IMC-PCA algorithm, for synthetically-generated Gaussian-distributed
datasets.

ble latency (Fig. 19a) and better area and energy efficiency
(Figs. 19b-c), with a 250× increase in energy performance
(Fig. 19d). Despite both metrics drop when considering also
the programming procedure, moving to lower conductances
and reducing the number of programming steps may help to
alleviate the energy and latency burden. Moreover, additional
latency and energy are to be expected also for GPUs when
considering the continuous shuttling of data between memory
and computing units [22]. Finally, system robustness to stuck-
on/off devices, as well as overall programming precision, may
be enhanced by employing redundancy and analog slicing
techniques [23] at cost of increased energy and area overhead.

The energy efficiency of IMC largely benefits from scaling,
due to the high parallelism of MVM (Fig. 20). The com-
putational complexity of the in-memory PCA algorithm is
O(p · k ·mn) floating-point operations (FLOPs), where mn is
the computational complexity of MVM on an m×n matrix, k
is the number of iterations of the power iteration section, and p
is the number of computed principal components. In contrast,
the energy complexity of the IMC-PCA algorithm is:

O(p · k · (2α ·mn+ β · (m+ p− 1))) (6)

where the first term accounts for the in-memory MVMs, and
the second term accounts for the DSP steps. α is the typical
energy dissipated on a single device during MVM, and β
is the energy of one FLOP in DSP, with α ≪ β typically.
At low dataset sizes, the energy consumption is dominated
by DSP, corresponding to an O(n) energy efficiency. As
the dataset size increases, energy dissipation on the resistive
array becomes the dominant contribution, thus leading to a
saturation of energy efficiency to a constant value in the order
of O(1/α), corresponding to ∼ 17TOPS/W, which may be
further improved by moving to higher resistive states. These
results support IMC for energy-efficient accelerators of data-
intensive ML tasks.

VI. CONCLUSION

We present a novel IMC-based PCA hardware architecture
based on power iteration and deflation by in situ, parallel, 2-
step MVM in RRAM arrays. The new concept is validated
experimentally on a 4-kbit RRAM array in CMOS 0.25 µm,
and complemented with extensive simulations in a realistic
benchmark framework. The IMC-based PCA shows an ac-
curacy comparable to FP64, while benefitting from smaller
area and higher energy efficiency compared to commercial
GPUs. These results support IMC as a strong candidate for
data-intensive ML accelerators.
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